Working with n-D arrays from .NET Framework DLL in JavaScript

This article provides an introduction to cross-technology handling of multidimensional arrays. Data structures are one of the essential aspects of every piece of software. Any application constantly process various information, that very often require specific grouping and access strategies. This aspect is addressed by arrays and more advanced collection types. By using the Javonet framework, users gain ability to easily and effectively work with data structures originating from .NET Framework DLL. Every array from .NET Framework DLL is treated as reference.

Javonet allows you to reference and use modules or packages written in (Java/Kotlin/Groovy/Clojure, C#/VB.NET, Ruby, Perl, Python, JavaScript/TypeScript) like they were created in your technology. If have not yet created your first project check Javonet overview and quick start guides for your technology.
ith Javonet you can interact with arrays from .NET Framework DLL like they were available in JavaScript but invocation must be performed through Javonet SDK API.

Custom .NET Framework DLL with arrays handling

With Javonet it is possible to reference any custom .NET Framework DLL and interact with arrays declared on types defined within that module almost the same as with any other JavaScript library.

Snippet below represents the sample code from .NET Framework DLL that has methods which return or process the arrays:

public string[] Get1DArray()
{
	return new string[] { "one", "two", "three", "four", "five" };
}

public string[,] Get2DArray()
{
	return new string[,] { { "S00", "S01" }, { "S10", "S11" } };
}

public double AddArrayElementsAndMultiply(double[] myArray, double myValue)
{
	double sum = 0;
	foreach (double element in myArray)
	{
		sum += element;
	}

	return sum * myValue;
}

Javonet SDK contains various methods to interact with arrays and consume the results in JavaScript:

Get element of 2D array from .NET Framework DLL in JavaScript

// use Activate only once in your app
Javonet.activate("your-license-key")

// create called runtime context
let calledRuntime = Javonet.inMemory().clr()

// set up variables
const libraryPath = resourcesDirectory + '/TestClass.dll'
const className = 'TestClass.TestClass'

// load custom library
calledRuntime.loadLibrary(libraryPath)

// get type from the runtime
let calledRuntimeType = calledRuntime.getType(className).execute()

// create type's instance
let instance = calledRuntimeType.createInstance().execute()

// invoke instance's method
let array = instance.invokeInstanceMethod("Get2DArray").execute()

// two ways to get elements from array
let response1 = array.getIndex(0, 0).execute()
let response2 = array.getIndex([0, 1]).execute()

// get value from response
let result1 = response1.getValue()
let result2 = response2.getValue()

// write result to console
console.log(result1)
console.log(result2)

In the snippet above, get2DArray method is used to get reference to 2D array from .NET Framework DLL. Method getIndex is used to get element from the array. Depending on calling technology there is one or more ways to get element from array.

Set element of 2D array from .NET Framework DLL in JavaScript

// use Activate only once in your app
Javonet.activate("your-license-key")

// create called runtime context
let calledRuntime = Javonet.inMemory().clr()

// set up variables
const libraryPath = resourcesDirectory + '/TestClass.dll'
const className = 'TestClass.TestClass'

// load custom libraries
calledRuntime.loadLibrary(libraryPath)

// get type from the runtime
let calledRuntimeType = calledRuntime.getType(className).execute()

// create type's instance
let instance = calledRuntimeType.createInstance().execute()

// invoke instance's method
let array = instance.invokeInstanceMethod("Get2DArray").execute()

// setting elements in array
array.setIndex([1, 1], "new value 1").execute()

// two ways of getting elements from array
let response1 = array.getIndex(1, 1).execute()

// get value from response
let result1 = response1.getValue()

// write result to console
console.log(result1)

In the snippet above, get2DArray method is used to get reference to 2D array from .NET Framework DLL. Method setIndex is used to set element of the array.

Get size and rank of 2D array

// use Activate only once in your app
Javonet.activate("your-license-key")

// create called runtime context
let calledRuntime = Javonet.inMemory().clr()

// set up variables
const libraryPath = resourcesDirectory + '/TestClass.dll'
const className = 'TestClass.TestClass'

// load custom libraries
calledRuntime.loadLibrary(libraryPath)

// get type from the runtime
let calledRuntimeType = calledRuntime.getType(className).execute()

// create type's instance
let instance = calledRuntimeType.createInstance().execute()

// invoke instance's method
let array = instance.invokeInstanceMethod("Get2DArray").execute()

// get array's size and rank
let response1 = array.getSize().execute()
let response2 = array.getRank().execute()

// get value from response
let result1 = response1.getValue()
let result2 = response2.getValue()

// write result to console
console.log(result1)
console.log(result2)

In the snippet above, get2DArray method is used to get reference to 2D array from .NET Framework DLL. Method getSize is used to get number of elements of the array.
Method getRank is used to get number of dimensions of the array.

The same operation can be performed remotely by just changing the new Runtime Context invocation from in memory to tcp that will create and interact with your .NET Framework DLL objects on any remote node, container or service that hosts Javonet Code Gateway. This way you can preserve the same logic in your application and instantly switch between monolithic and microservices architecture without the need to implement the integration layer based on web services or other remote invocation methods.

Read more about use cases and software architecture scenarios where Javonet runtime bridging technology can support your development process.